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Abstract

A non-overlapping domain decomposition method (DDM) is proposed herein to solve Maxwell equations in R3. In

this work, the Maxwell equations are discretized using a vector finite element method with hierarchical H(curl) vector

basis functions. There are two major ingredients in the proposed non-overlapping DDM: (a) A proper 1st order trans-

mission condition to enforce field continuity across domain boundaries and (b) A cement technique to allow non-

matching grids for neighboring domains. Moreover, a detail Fourier analysis of the transmission condition for a canon-

ical half-space example is presented. The analysis provides significant insights into the convergence behavior of the pro-

posed non-overlapping DDM for solving electromagnetic radiation problems, such as the large finite antenna arrays.

Particularly for the antenna arrays, the proposed non-overlapping DDM is extremely efficient since the formulation can

easily incorporate geometrical repetitions. Exponentially tapered notch (Vivaldi) antenna arrays with size up to

100 · 100 elements are solved on a common PC to validate the proposed non-overlapping DDM.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Modern wireless communication systems and radars often use large antenna arrays to transmit and/or

receive signals through space. These arrays are usually geometrically complex, include significant number of
antenna elements, and are electrically large. Consequently, it is of great challenge to model such structures
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using numerical methods. Without parallelization, it would be prohibitive to solve large finite antenna ar-

rays using traditional methods, such as finite element (FE) [1], integral equation (IE) [2] and finite difference

time domain (FDTD) [3] methods. However, due to many repetitions in the structure, it is natural to apply

DDMs to model large finite antenna arrays.

Every DDM algorithm starts by dividing the computational domain into a number of smaller sub-
domains [4]. The sub-domains are solved individually and the interactions between the sub-domains are

communicated through a proper transmission condition (TC) [5–7]. This process is applied iteratively until

the entire solution converges to a desired accuracy. Based on this simple framework, various methods have

been proposed for different types of problems or differential equations. The classical alternating Schwarz

method [4,8,9] is based on overlapping sub-domains with Dirichlet type TCs. The method is used primarily

for elliptic equations. Although the overlapping DDM is still an active research topic with many preferable

features, the non-overlapping DDM has become very appealing for its inherent parallelism and flexibility

[10]. Recent works have found that the convergence of the non-overlapping DDM can be assured by impos-
ing Robin type TC; we refer [5,11] for elliptic problems, whereas for hyperbolic problems we state [6,7,12].

Furthermore, Maxwell�s problems have been successfully solved using the non-overlapping DDM that em-

ploys Robin TCs [13–16]. The first non-overlapping DDM for Maxwell equations was proposed by Després

in [13,14], and extended to a relaxed iteration scheme and a higher order TC by Collino et al. [15]. In these

works, pseudo-energy norms were used to prove the convergence of their methods. However, we shall prove

convergence of our non-overlapping DDM through a Fourier analysis, which is more related to physics.

Our analysis follows closely the work of Gander et al. [6], where the convergence rate is derived for simpli-

fied semi-infinite domains. With the Fourier analysis for semi-infinite domains, analytical expressions of the
convergence factors can be obtained. Therefore, one of the main focuses of this paper is a comprehensive

study of the effects of TCs in solving general 3D electromagnetic (EM) problems using the non-overlapping

DDM.

The present method also allows non-matching grids between neighboring sub-domains to enable inde-

pendent local discretizations. The flexibility of non-matching discretizations across sub-domains not only

relaxes the mesh generation and adaptive mesh refinement process, but more importantly avoids the

periodic mesh constraints on the sides of the repeating blocks. A popular approach to address the non-

matching grids issue in the non-overlapping DDMs is the mortar element method. The mortar element
method described in [9,22,23] accounts for the non-conformity between domains via the Lagrangian mul-

tiplier. The main drawbacks of the mortar elements are two: (a) the Lagrangian multipliers thus introduced

do not relate to any physical quantities and (b) zero diagonal blocks are resulted in the final matrix equa-

tions. In our approach, the non-matching grids are permissible through the introduction of an additional

set of variables on each sub-domain interface. Unlike the mortar element method, the additional variables

introduced in the current approach possess physical meaning, and do not result in zero diagonal blocks in

the final matrix equation. Subsequently, our method is closely related to the cement method described in

[18]. Similar approaches are also found in [17,19–21].
To solve the sub-domain problems, the finite element method (FEM) is employed. The capability of

FEM to handle complex geometries and highly inhomogeneous material properties is of paramount impor-

tance to simulate any real-life antenna array problems. In the current approach, we adopt the second-order

hierarchical Nedelec H(curl) tetrahedral vector finite elements [24]. Also, we apply the p-type multiplicative

Schwarz (pMUS) preconditioner presented in [4,25] to solve the sub-domain matrix equations. Moreover,

in order to assure the robustness and the accuracy of the entire solution process, the discrete Hodge decom-

position [26] and the h-adaptive mesh refinement (h-AMR) scheme [27] are also incorporated.

The rest of the paper is organized as follows. We first describe the continuous boundary value problem
(BVP) in Section 2.1. The decomposed BVP used in the DDM is presented in Section 2.2. In Section 2.3, the

cement method for electromagnetic problems is discussed in detail. Section 2.4 presents the convergence

rate analyses of the Robin TCs for three dimensional semi-infinite domains with planar interfaces. The pro-
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posed DDM is reformulated in Section 2.5 to provide additional insights of the algorithm. The numerical

results, large finite Vivaldi antenna arrays, are included in Section 3 to demonstrate the versatility and

elegancy of the proposed non-overlapping DDM. Finally, a brief summary and conclusion is included in

Section 4.
2. Theory

2.1. Problem statement

In this paper, we are interested in solving large finite antenna arrays. A sample example is shown in Fig.

1, where an n · m Vivaldi antenna array is plotted. Moreover, as indicated in Fig. 1, we enclosed the entire

array in a bounded domain X. Subsequently, the mathematical model can be described by:
r� 1

lr
r� E� k2erE ¼ �jxl0J

imp in R3;

n�r� E ¼ 0 on Cpmc;

n� E ¼ 0 on Cpec;

lim
r!1

rr� Eþ jkr� Eð Þ ¼ 0; r ¼ jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
;

ð1Þ
Fig. 1. Geometry of a finite n · m Vivaldi antenna array.
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where k refers to the wave number, the unit normal n is always pointing away from the problem domain,

and er and lr are the relative permittivity and permeability of the medium, respectively. Note also that

throughout this paper, vector entities are written in bold letters. The perfect magnetic conductors

(PMC) and the perfect electric conductors (PEC) are denoted by Cpmc and Cpec, respectively. The excitation

is assumed to be an impressed electric current Jimp within the domain of interest. The last equation in (1) is
the Silver–Muller radiation condition. However, in our current approach, we simply employ the 1st order

absorbing boundary condition (ABC) [28] on C1 to convert the infinite domain problem to a finite one.

Subsequently, the boundary value problem (BVP) can be stated as
r� 1

lr

r� E� k2erE ¼ �jxl0J
imp in X � R3;

c�t r� Eð Þ ¼ 0 on Cpmc;

ct Eð Þ ¼ 0 on Cpec;

c�t r� Eð Þ � jkct Eð Þ ¼ 0 on C1;

ð2Þ
where the tangential surface trace ct and the twisted tangential surface trace c�t operators are defined by
ct uð Þ ¼ n� u� n;

c�t uð Þ ¼ n� u:
ð3Þ
The corresponding Galerkin weak formulation for (2) can now be formally stated as
Seek uh 2 Sh � H0 curl;Xh
� �

such thatZ
Xh
r� vh � 1

lr
r� uh dV � k2

Z
Xh
vh � eruh dV þ jk

g

Z
C1

vh � ct uh
� �

dS ¼ �jxl0

Z
Xh
vh � Jimp dV

8vh 2 Sh � H0 curl;Xh
� �
where Xh is a discretization of the finite domain X by tetrahedra with typical element size h andH0(curl; X
h)

is the usual curl-conforming function space, namely
H0 curl;Xh
� �

¼ v jv 2 L2 Xh
� �� �3

; r� vð Þ 2 L2 Xh
� �� �3

and ct vð Þ ¼ 0 on Cpec

n o
: ð4Þ
2.2. A non-overlapping domain decomposition algorithm

The solution of large finite antenna arrays naturally suggests the application of the DDM. For simplicity

and without loss of generality, we consider only partitioning the problem domain into two sub domains. As

shown in Fig. 2, the particular DDM that we are interested in this application is the non-overlapping

DDM. Thus the problem domain X is partitioned into two non-overlapping sub-domains, X1 and X2.
Fig. 2. Partitioning a domain X into two non-overlapping sub-domains X1 and X2.
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We shall denote the boundary that separates X1 and X2 by C12. Moreover, we shall also employ E1 and E2

to denote the restrictions of E in sub-domains X1 and X2, respectively. Subsequently, the proposed non-

overlapping DDM can be formulated through the following iteration process:
find ðEðnÞ
1 ;E

ðnÞ
2 Þ given an arbitrary initial guess ðEð0Þ

1 ;E
ð0Þ
2 Þ by BVP for ðEðnÞ

1 Þ in sub� domain X1

r� 1

lr
r� E

nð Þ
1 � k2erE

nð Þ
1 ¼ �jxl0J

imp
1 in X1;

ct E
ðnÞ
1

� �
¼ 0 on oX1 \ Cpec;

c�t
1

lr
r� E

nð Þ
1

� �
¼ 0 on oX1 \ Cpmc;

c�t
1

lr
r� E

nð Þ
1

� �
� jkct E

ðnÞ
1

� �
¼ 0 on oX1 \ C1;

c�t
1

lr
r� E

nð Þ
1

� �
Cð1Þ
12

� jkct E
ðnÞ
1

� �
¼ �c�t

1

lr
r� E

n�1ð Þ
2

� �
Cð2Þ
12

� jkct E
ðn�1Þ
2

� �
on C12

ð5Þ
and the BVP for E
ðnÞ
2 in sub-domain X2
r� 1

lr
r� E

nð Þ
2 � k2erE

nð Þ
2 ¼ �jxl0J

imp
2 on X2;

ct E
ðnÞ
2

� �
¼ 0 on oX2 \ Cpec;

c�t
1

lr
r� E

nð Þ
2

� �
¼ 0 on oX2 \ Cpmc;

c�t
1

lr
r� E

nð Þ
2

� �
� jkct E

ðnÞ
2

� �
¼ 0 on oX2 \ C1;

c�t
1

lr
r� E

nð Þ
2

� �
Cð2Þ
12

� jkct E
ðnÞ
2

� �
¼ �c�t

1

lr
r� E

n�1ð Þ
1

� �
Cð1Þ
12

� jkct E
ðn�1Þ
1

� �
on C12:

ð6Þ
In Eqs. (5) and (6), we define c�t ðuÞCðiÞ
12

¼ ni � u, where ni is the unit normal on the interface boundary C12

and pointing away from sub-domain Xi (refer to Fig. 2). Also, we remark that in our current implementa-

tion, we have employed the Robin condition as the TC between the two sub-domains. It is straightforward

to show that the two transmission conditions in (5) and (6) imply the needed field continuities across C12.

Namely,
c�t
1
lr
r� E

nð Þ
1

� �
Cð1Þ
12

� jkct E
ðnÞ
1

� �
¼ �c�t

1
lr
r� E

n�1ð Þ
2

� �
Cð2Þ
12

� jkct E
ðn�1Þ
2

� �
on C12;

c�t
1
lr
r� E

nð Þ
2

� �
Cð2Þ
12

� jkct E
ðnÞ
2

� �
¼ �c�t

1
lr
r� E

n�1ð Þ
1

� �
Cð1Þ
12

� jkct E
ðn�1Þ
1

� �
on C12;

8>><
>>:

)
c�t

1
lr
r� E1

� �
Cð1Þ
12

¼ �c�t
1
lr
r� E2

� �
Cð2Þ
12

ct E1ð Þ ¼ ct E2ð Þ

8<
:

ð7Þ
We shall show later, by Fourier analysis, that the use of the Robin condition will provide the needed con-

vergence for the propagating modes.
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2.3. DDM with non-matching grids

The DDM suggested by Eqs. (5) and (6) requires a matching grid between the sub-domains X1 and X2.

Practically, this requirement taxes significantly on the numerical analyst when he/she tries to analyze large

finite antenna arrays. In this paper, we propose a novel approach, similar to the cement techniques em-
ployed in the literature [17,18], for DDM with non-matching grids. With the proposed technique, each

sub-domain can be meshed independently without consideration of conformity to the adjacent sub-domains

(see Fig. 3). Note also in Fig. 3, the interface boundary Cij between the sub-domains Xi and Xj has been split

into two identical boundary surfaces, Ci (resides on Xi) and Cj (resides on Xj). It is due to this splitting that

different triangulations are allowed to exist on Ci and Cj. The boundary conditions, tangential continuities

of both electric and magnetic fields across Cij, will be imposed through a Galerkin variational treatment.

Although in principle, the triangulations in Ci and Cj can be drastically different, the rule of thumb is that

the spatial resolutions hi (the characteristic element size in triangulation T hi) and hj (the characteristic ele-
ment size in triangulation T hj ) should be compatible to assure the accuracy.

To implement the cement method, which glues together the non-matching grids in the DDMs, we intro-

duce additional sets of variables on the interface boundaries. For simplicity, we consider again the two sub-

domain DDMs as shown in Fig. 4. As can be seen in Fig. 4, we have employed two separate sets of tan-

gential traces, e1 and e2, of the electric fields on C1 and C2, respectively. Additionally, there are two new

sets of variables, J1 and J2, defined on the interface boundary. Subsequently, at the nth iteration, our

two BVPs (5) and (6) can now be restated as:
r� 1

lr
r� E

nð Þ
1 � k2erE

nð Þ
1 ¼ �jxl0J

imp
1 in X1;

ct E
ðnÞ
1

� �
¼ 0 on oX1 \ Cpec;

c�t
1

lr
r� E

nð Þ
1

� �
¼ 0 on oX1 \ Cpmc;

c�t
1

lr
r� E

nð Þ
1

� �
� jkct E

ðnÞ
1

� �
¼ 0 on oX1 \ C1;

J
ðnÞ
1 ¼ c�t

1

lr
r� E

ðnÞ
1

� �
C1

on C1;

J
ðnÞ
1 � jkeðnÞ1 ¼ �J

ðn�1Þ
2 � jkeðn�1Þ

2 on C1

ð8Þ
and
Fig. 3. Cement technique glues together two sub-domains Xi and Xj with non-matching surface grids.
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r� 1

lr

r� E
nð Þ
2 � k2erE

nð Þ
2 ¼ �jxl0J

imp
2 in X2;

ct E
ðnÞ
2

� �
¼ 0 on oX2 \ Cpec;

c�t
1

lr

r� E
nð Þ
2

� �
¼ 0 on oX2 \ Cpmc;

c�t
1

lr
r� E

nð Þ
2

� �
� jkct E

ðnÞ
2

� �
¼ 0 on oX2 \ C1;

J
ðnÞ
2 ¼ c�t

1

lr
r� E

ðnÞ
2

� �
C2

on C2;

J
ðnÞ
2 � jkeðnÞ2 ¼ �J

ðn�1Þ
1 � jkeðn�1Þ

1 on C2:

ð9Þ
It is obvious that when Eqs. (8) and (9) converge, the converged fields E1 and E2 are indeed the restric-

tions of the electric field E of (2) in the sub-domains X1 and X2, respectively. We should emphasize here
that the two sets of variables J1 and J2 defined on C1 and C2 are the key ingredients of the cement

technique that we introduce here. Unlike the Lagrange multipliers in the mortar element method, the

additional variables carry significant physical meanings; namely, they are proportional to the electric

current density on the surfaces. Furthermore, they will not result in any zero diagonal blocks in the final

matrix equations.

To implement the domain decomposition iteration described by Eqs. (8) and (9), we need to employ fi-

nite dimensional descriptions for X1 and X2. In the current implementation, we have chosen to discretize X1

and X2 into unions of tetrahedra. The corresponding spaces for the fields and the additional variables are
E1 2 Sh
1 � H0 curl;X1ð Þ; E2 2 Sh

2 � H0 curl;X2ð Þ;
J1 2 Kh

1 � H
�1=2
k divC;C1ð Þ; J2 2 Kh

2 � H
�1=2
k divC;C2ð Þ:

ð10Þ
Specifically, the basis functions for E1, E2 within each tetrahedron are the p = 2, 1st kind Nedelec H(curl)

vector elements [24]. Moreover, for the variables, J1 and J2, the basis functions are the p = 2, 1st kind Nede-

lec H(div) vector elements [29] on triangles. Consequently, the corresponding Galerkin weak statement for

Eqs. (8) and (9) is:
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Seek ðEðnÞ
1 ;E

ðnÞ
2 Þ 2 Sh

1 � Sh
2 and ðJðnÞ

1 ; J
ðnÞ
2 Þ 2 Kh

1 � Kh
2 such that

a vh1;E
ðnÞ
1

� �
X1

þ jk ctv
h
1; e

ðnÞ
1

� �
oX1\C1

þ ctv
h
1; J

ðnÞ
1

� �
C1

¼ �jk
g

vh1; J
imp
1

� �
X1

;

a vh2;E
ðnÞ
2

� �
X2

þ jk ctv
h
2; e

ðnÞ
2

� �
oX2\C1

þ ctv
h
2; J

ðnÞ
2

� �
C2

¼ �jk
g

vh2; J
imp
2

� �
X2

;

kh1; e
ðnÞ
1

� �
C1

þ j

k
kh1; J

ðnÞ
1

� �
C1

¼ kh1; e
ðn�1Þ
2

� �
C1

� j

k
kh1; J

ðn�1Þ
2

� �
C1

;

kh2; e
ðnÞ
2

� �
C2

þ j

k
kh2; J

ðnÞ
2

� �
C2

¼ kh2; e
ðn�1Þ
1

� �
C2

� j

k
kh2; J

ðn�1Þ
1

� �
C2

;

8 vh1; v
h
2

� �
2 Sh

1 � Sh
2 and kh1; k

h
2

� �
2 Kh

1 � Kh
2;

ð11Þ
where the bilinear form a(u,v)X and the inner product (u,v)X are defined by
a u; vð ÞX ¼
Z
X

r� uð Þ � 1
lr

r� vð Þ
� 	

dx3 � k2
Z
X

u � ervð Þdx3;

u; vð ÞX ¼
Z
X

u � vð Þdx3;

u; vð ÞoX ¼
Z
oX

u � vð Þdx2:

ð12Þ
2.4. Fourier analysis of 1st order transmission conditions

In this section, a detailed analysis of the TCs used in the proposed DDM will be presented. As it was

stated earlier, a proper choice of the TCs not only ensures uniqueness, but also accelerates the convergence

of the DDM algorithm. Even though in practical DDM implementations TCs can be imposed on com-

pletely arbitrarily shaped interfaces, a general analysis of such situations can be very difficult. For that

reason, we will restrict our analysis on planar interfaces only. Moreover, infinite lateral extent (half-space

sub-domains) will be assumed, in order to facilitate the mathematical apparatus provided by the Fourier
theory. A similar approach for the Maxwell�s equations with another form of the TCs can be found in

[36]. At this point, it should be noted that the Fourier analysis is restricted to rather idealistic geometries.

However, it has been found that the convergence estimates provided by the analysis predict very accurately

even for complicated interface boundaries, at least for two dimensional scalar Helmholtz problems [6].

For the reasons given, the simplified geometry of Fig. 5 will be considered. The electromagnetic bound-

ary value problem of interest consists of the vector curl-curl equation of (1) in X ¼ R3, and the Silver-

Muller radiation condition at infinity. Note that there is no PEC, PMC or material inhomogeneities

(er(r) = lr(r) = 1, "r 2 X) within X. The decomposed problem is that of (5) and (6) on X1 ¼
ð�1; 0� � R2 and X2 ¼ ½0;þ1Þ � R2, respectively. Moreover, the interface is C12 � C ¼ R2, as shown in

Fig. 5.

With respect to Fig. 5, let us first introduce the following two-dimensional Fourier transform pair:
f
_

kx; ky ; z
� �

¼ 1

2p

Z þ1

�1

Z þ1

�1
f x; y; zð Þej kxxþkyyð Þ dxdy;

f x; y; zð Þ ¼ 1

2p

Z þ1

�1

Z þ1

�1
f
_

kx; ky ; z
� �

e�j kxxþkyyð Þ dkx dky ;
ð13Þ
where f
_

denotes functions in Fourier domain, and kx, ky are the Fourier variables. In a straightforward

way, the Fourier analysis of the ‘‘idealized’’ BVP will require the application of the Fourier transform
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(13) on both vector curl-curl equation subject to the Silver–Muller radiation condition on each domain, and

each of the TCs of (8) and (9). Even though this is a simple concept, the underling algebraic manipulations

are very lengthy, and require analytic evaluations of the eigenvalues and eigenvectors of a 2 · 2 matrix,

which leads to rather complicated final expressions for the convergence factors.

Rather than following that approach, we found it considerably easier to formulate the problem based on

the concept of Transverse Electric (TE) or H and Transverse Magnetic (TM) or E modal decomposition of
electromagnetic fields [30,31]. The electromagnetic fields produced by an arbitrary oriented electric or mag-

netic source in a ‘‘layered’’ environment, can be written as a superposition of TE and TM modes with re-

spect to the ‘‘layered’’ interface normal [31]. The term ‘‘layered’’ implies geometry with multiple planar

parallel interfaces that extend laterally at infinity. The problem of Fig. 5 belongs to the abovementioned

category. In that case there is only one interface C12. The other key ingredient of the following derivation

is the use of rotation transformation of the Fourier variables kx, ky, which significantly simplifies the

expressions of the electromagnetic fields in the Fourier domain.

For TE(H) modes [31]:
E ¼ �z�rw ¼ x
ow
oy

� y
ow
oy

;

H ¼ � g
jk

r�r� zwð Þ ¼ � g
jk

x
o2w
ox oz

þ y
o2w
oy oz

� z
o2w
ox2

þ o2w
oy2

� �� 	
:

ð14Þ
For TM(E) modes [31]:
E ¼ r�r� z/ ¼ x
o2/
ox oz

þ y
o2/
oy oz

� z
o2/
ox2

þ o2/
oy2

� �� 	
;

H ¼ � jk
g

z�r/ð Þ ¼ � jk
g

x
ow
oy

� y
ow
ox

� �
;

ð15Þ
where w and / satisfy
o
2

ox2
þ o

2

oy2
þ o

2

oz2
þ k2

� �
f x; y; zð Þ ¼ 0; f ¼ w;/: ð16Þ
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Taking the Fourier transform of (16) leads to
d2

dz2
þ k2 � b2
� �� 	

f
_

kx; ky ; z
� �

¼ 0; f ¼ w;/; ð17Þ
where b2 ¼ k2x þ k2y is the radial Fourier variable. In (17), it is convenient to further define the z-directed

wave number as
k2z ¼ b2 � k2 ) kz ¼
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

q
k > jbj; propagating modesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � k2
q

k < jbj; evanescent modes

8><
>: ð18Þ
Before applying the Fourier transform to (14) and (15), it would be useful to introduce the following

transformation to the ‘‘natural’’ Fourier coordinate system (kx,ky) ! (ku,kv). It will significantly simplify
the field representations:
u

v

� 	
¼

sin a � cos a

cos a sin a

� 	
x

y

� 	
; ð19Þ
where the rotation angle is given by cosa = kx/b or sina = ky/b. Subsequently, we have
ku ¼ kx sin a� ky cos a ¼ 0;

kv ¼ kx cos aþ ky sin a ¼ b:
ð20Þ
We remark that the above-mentioned transformation can also be viewed as a transformation to the polar

Fourier domain with the radial variable b, and the angular Fourier angle a. This is a fairly standard ap-
proach in dealing with the derivation of ‘‘layered’’ Green�s functions in electromagnetics [32,33].

Having defined the auxiliary functions w and / and the rotation transformation, it is time to apply the

Fourier transform to the TE and TM modal fields of (14) and (15). In doing so, the following expressions

are obtained for the TE modes:
E
_

¼ �j xky w
_

�ykx w
_h i

;

H
_

¼ g
jk

xjkx
dw

_

dz
þ yjky

dw
_

dz
� zb2 w

_

" #
:

ð21Þ
Applying the rotation transformation of (19), the Fourier fields of the TE modes are further simplified to
E
_

¼ �ujbw
_

;

H
_

¼ g
jk

vjb
dw

_

dz
� zb2 w

_

" #
:

ð22Þ
Similarly, the TM Fourier fields in the rotated system are
E
_

¼ �vjb
d/

_

dz
þ zb2 /

_

;

H
_

¼ u
k
g
b/

_

;

ð23Þ
where both w
_

and /
_

satisfy the homogeneous equation
d f
_

dz
� k2z f

_

¼ 0; f ¼ /;w: ð24Þ
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The general solutions of the ordinary differential equations in (24) are of the form
Table

TE an

TE

TM

Table

TE an

TE

TM
f
_

¼ Aþe�kzz þ A�eþkzz: ð25Þ

Referring to the interface problem of Fig. 5 and subject to the Silver–Muller radiation condition on each

appropriate sides of X1 and X2, becomes
f
_

1 kx; ky ; z
� �

¼ F �
1 kx; ky ; 0
� �

ekzz in X1;

f
_

2 kx; ky ; z
� �

¼ F þ
2 kx; ky ; 0
� �

e�kzz in X2;
ð26Þ
where F �
1 and F þ

2 are the Fourier modal excitation coefficients to be determined by the enforcement of the

TC across the interface C12. Note that the following part of the section, F �
1 and F þ

2 will be replaced by A1

and A2, respectively, when referring to TM modes, and with B1, B2 when referring to TE modes. Putting

together (22)–(24), the Fourier field representations of Table 1 are obtained.

The objective of this section is to find the convergence rates qTE and qTM for the TE and TM modes,

respectively, as functions of kz. To achieve that, it is necessary to find a relation between the excitation coef-

ficients A(n) and A(n�2) for the TM modes, along with B(n) and B(n�2) for the TE modes, where the super-

script (n) denotes the DD iteration number. This is done through the enforcement of TC on either domain,

namely through the last equations of (8) and (9). Before doing that, it will be insightful to generalize the set

of TC by assuming the Robin constant to be general complex number c 2 C, rather than a purely imaginary
number. We will denote this type of TCs as Generalized Robin Transmission Conditions. Through this mod-

ification, the Fourier transformed TCs in (8) and (9) become
J
_ðnÞ

1 � ce
_ðnÞ
1 ¼ �J

_ðn�1Þ

2 � ce
_ðn�1Þ

2 at z ¼ 0�;

J
_ðnÞ

2 � ce
_ðnÞ
2 ¼ �J

_ðn�1Þ

1 � ce
_ðn�1Þ

1 at z ¼ 0þ:

ð27Þ
The analysis proceeds by finding J
_

i and e
_

i, i = 1,2 with the use of Table 1. After some very simple and

short algebraic manipulations, the tangential Fourier fields of Table 2 are obtained. Note that with the

use of the rotation transformation in the Fourier domain, the tangential TE and TM fields are completely

decoupled. This is reflected on Table 2, where the TE representation involves only u coordinate whereas the

TM representation involves v coordinate only.
1

d TM Fourier field representations on the two subdomains

X1 X2

E
_ðnÞ

H
_ðnÞ

E
_ðnÞ

H
_ðnÞ

�BðnÞ
1 jbeþkzzu BðnÞ

1
g
jk vjkz � zbð Þbeþkzz �BðnÞ

2 jbe�kzzu �BðnÞ
2

g
jk vjkz þ zbð Þbe�kzz

AðnÞ
1 �vjkz þ zbð Þbeþkzz AðnÞ

1
k
g be

þkzzu AðnÞ
2 vjkz þ zbð Þbe�kzz AðnÞ

2
k
g be

�kzzu

2

d TM Fourier tangential field representations on the domain interface

X1 X2

e
_ðnÞ

ðz ¼ 0�Þ J
_ðnÞ

ðz ¼ 0�Þ e
_ðnÞ

ðz ¼ 0þÞ J
_ðnÞ

ðz ¼ 0þÞ
�BðnÞ

1 jbu BðnÞ
1 jbkzu �BðnÞ

2 jbu BðnÞ
2 jbkzu

�AðnÞ
1 jkzbv �AðnÞ

1 jk2bv AðnÞ
2 jkzbv AðnÞ

2 jk2bv



With this observation in mind it is now straightforward to substitute the values of Table 2 on (27) and

obtain the following convergence factors
 


qTE kzð Þ ¼

B nð Þ
1



 


B n�2ð Þ
1




 


 ¼
kz � c
kz þ c











2

; ð28Þ
for the TE modes; and,
 


qTM kzð Þ ¼

A nð Þ
1



 


A n�2ð Þ
1




 


 ¼
k2 þ ckz
k2 � ckz











2

ð29Þ
for the TM modes. In a more convenient way, the convergence estimates of (28) and (29), can be written in

terms of the transverse spectral variable b, with the aid of (18). Consequently, we have
qTE bð Þ ¼

j
ffiffiffiffiffiffiffiffiffi
k2�b2

p
�c

j
ffiffiffiffiffiffiffiffiffi
k2�b2

p
þc











2

; k > bj j; propagating modes;

ffiffiffiffiffiffiffiffiffi
b2�k2

p
�cffiffiffiffiffiffiffiffiffi

b2�k2
p

þc











2

; k < bj j; evanescent modes

8>>><
>>>:

ð30Þ
and
qTM bð Þ ¼

k2þjc
ffiffiffiffiffiffiffiffiffi
k2�b2

p

k2þjc
ffiffiffiffiffiffiffiffiffi
k2�b2

p











2

; k > bj j; propagating modes;

k2þc
ffiffiffiffiffiffiffiffiffi
b2�k2

p

k2þc
ffiffiffiffiffiffiffiffiffi
b2�k2

p











2

; k < bj j; evanescent modes:

8>>><
>>>:

ð31Þ
In a convergent DD scheme that employs a stationary outer loop iteration, all four modes in (30) and (31)

should have q < 1. This implies that our analysis and convergence rates are valid for both Jacobi and
Gauss–Seidel iteration schemes, or in terms of the Schwarz theory, both additive and multiplicative

Schwarz. On the other hand, if each of the above schemes is used as a preconditioner accelerator on a Kry-

lov type method, a spectral radius q > 1 does not necessarily imply that the method diverges.

In light of (30), (31) and the comments made, a number of convergent regions can be identified for each

set of modes, based on the choice of the Robin constant c. From (30), it is clear that choosing Imfcg > 0

will lead to convergent TE propagation modes, whereas the Refcg > 0 would lead to convergent TE eva-

nescent modes. These convergent regions for the TE modes are depicted at Fig. 6(a) in the complex c-plane.
It is clear that the first quadrant will be the choice of preference since both evanescent and propagation
modes converge. This is exactly the case described in [6] for the two-dimensional Helmholtz equation. Fur-

thermore, like the Helmholtz case, even if c is chosen on the appropriate quadrant, the cut-off mode b = k

(plane-wave incidence parallel to the interface) will never converge, since that choice makes qTE(b = k) = 1.

On the other hand, the situation for the TM modes is quite different. From (31), the propagating TMmodes

will converge in the region where Imfcg > 0, but the evanescent ones will converge on the region

Refcg < 0, which is complementary to the evanescent TE modes case. Again the regions of convergence

for the TM modes are plotted in the complex c-plane in Fig. 6(b). This is a situation unique to the Maxwell

equations. Unfortunately, this complicates the convergence behavior of a stationary iteration DDM. As it
is apparent from Fig. 6, there is no region where all four modes are convergent. In the first quadrant, all TE

modes together with the propagating TM modes are convergent, but the evanescent TM modes are diver-

gent qTM
evan >



Fig. 6. Regions of convergence for propagating and evanescent: (a) TE modes and (b) TM modes.
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Fortunately, for the radiating problems, such as the antenna arrays, the evanescent modes along one

particular interface will be the propagating modes along other interfaces. Therefore, the choice where all

the propagating modes converge and qTE
evan ¼ qTM

evan ¼ 1 will be sufficient to provide a convergent DDM.

Such a choice was provided by Després et al. in their original paper [14]. In that work c = jk was used; this
choice is also depicted in Fig. 6. Throughout this paper, the same c has been used.

2.5. DDM as a preconditioner

In this section, we shall reformulate our DDM in a slightly different way and show that the DDM meth-

od proposed herein can be viewed as a preconditioner. We start by rewriting the BVP in Xh ¼ Xh
1 [ Xh

2 (we

shall omit the superscript h whenever it is obvious) and employing the auxiliary variables J1 and J2:
r� 1

lr
r� E1 � k2erE1 ¼ �jxl0J

imp
1 in X1;

r� 1

lr
r� E2 � k2erE2 ¼ �jxl0J

imp
2 in X2;

ct E1ð Þ ¼ ct E2ð Þ ¼ 0 on Cpec;

c�t
1

lr
r� E1

� �
¼ c�t

1

lr
r� E2

� �
¼ 0 on Cpmc;

c�t
1

lr
r� E1

� �
� jkct E1ð Þ ¼ c�t

1

lr
r� E2

� �
� jkct E2ð Þ ¼ 0 on C1;

J1 ¼ c�t
1

lr
r� E1

� �
C1

; J2 ¼ c�t
1

lr
r� E2

� �
C2

;

J1 � jke1 ¼ �J2 � jke2 on C1;

J2 � jke2 ¼ �J1 � jke1 on C2:

ð32Þ
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Subsequently, the corresponding Galerkin formulation can be stated as
Seek ðE1;E2Þ 2 S1 � S2 and ðJ1; J2Þ 2 K1 � K2 such that

a v1;E1ð ÞX1
þ a v2;E2ð ÞX2

þ jk ctv1; e1ð ÞoX1\C1
þ jk ctv2; e2ð ÞoX2\C1

þ ctv1; J1ð ÞC1
þ ctv2; J2ð ÞC2

¼ �jk
g

v1; J
imp
1

� �
X1

� jk
g

v2; J
imp
2

� �
X2

;

k1; e1ð ÞC1
þ j

k
k1; J1ð ÞC1

� k1; e2ð ÞC1
þ j

k
k1; J2ð ÞC1

¼ 0;

k2; e2ð ÞC2
þ j

k
k2; J2ð ÞC2

� k2; e1ð ÞC2
þ j

k
k2; J1ð ÞC2

¼ 0;

8 v1; v2ð Þ 2 S1 � S2 and k1; k2ð Þ 2 K1 � K2:

ð33Þ
Let us introduce a notation here to facilitate our discussion. For a vector u 2 S1 · S2 · K1 · K2, we can ex-

press it as
u ¼

u1

u2

J
ðuÞ
1

J
ðuÞ
2

2
6664

3
7775 ¼

W
� 1

0 0 0

0 W
� 2

0 0

0 0 W
� 1

0

0 0 0 W
� 2

2
6666664

3
7777775

~u1

~u2

~J
ðuÞ
1

~J
ðuÞ
2

2
66664

3
77775; ð34Þ
where the symbol �
�
means a row vector and �

�
indicates a column vector. Also, in Eq. (34), the entries in

the row vector W
� i

span the finite dimensional subspace Si � H0(curl;Xi). Similarly, we have the entries in a
�ispan the subspace Ki � H

�1=2

k ðdivC;CiÞ. The column vectors ~u1 and ~u2 are the coefficient vectors of u1 and

u2, respectively. Similar definitions are for the column vectors ~J
ðuÞ
1 and ~J

ðuÞ
2 . We further partition the coef-

ficient vector ~ui into two sub-column vectors, that is
~ui ¼
~uIi
~uCi

" #
ð35Þ
with ~uIi refers to the coefficients inside sub-domain Xi and ~uCi for the coefficients on the boundary Ci. Con-

sequently, it can be shown that the final matrix equation for the Galerkin formulation (33) is
A1 C1 0 0 0 0

CT
1 B1 D1 0 0 0

0 Dt
1

j

kT1 0 �Dt
12

j

kT12

0 0 0 A2 C2 0

0 0 0 Ct
2 B2 D2

0 �Dt
21

j

kT21 0 Dt
2

j

kT2

2
666666664

3
777777775

~uI1
~uC1

~J
ðuÞ
1

~uI2
~uC2

~J
ðuÞ
2

2
66666666664

3
77777777775
¼

~y1

0

0

~y2

0

0

2
666666664

3
777777775
; ð36Þ
where the matrix entries are defined such that 8v ¼ ½ v1 v2 J
ðvÞ
1 J

ðvÞ
2

�t 2 S1 � S2 � K1 � K2, we have
~vIi ~vCi
� � Ai Ci 0

Ct
i Bi Di

� 	 ~uIi
~uCi

~J
ðuÞ
i

2
64

3
75 ¼ a vi; uið ÞXi

þ jk ctvi; uið ÞoXi\C1
þ ctvi; J

ðuÞ
i

� �
Ci

;

J
�
ðvÞ

i
Dt

ij~u
C
j ¼ J

ðvÞ
i ; ctuj

� �
Ci

; J
�
ðvÞ

i
Ti
~J
ðuÞ
i ¼ J

ðvÞ
i ; J

ðuÞ
i

� �
Ci

; J
�
ðvÞ

i
Tij

~J
ðuÞ
j ¼ J

ðvÞ
i ; J

ðuÞ
j

� �
Ci

:

ð37Þ
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The formulation introduced in Eq. (11) can now be solved through
A1 C1 0 0 0 0

CT
1 B1 D1 0 0 0

0 Dt
1

j

kT1 0 0 0

0 0 0 A2 C2 0

0 0 0 Ct
2 B2 D2

0 0 0 0 Dt
2

j

kT2

2
666666664

3
777777775

~uI1
~uC1

~J
ðuÞ
1

~uI2
~uC2

~J
ðuÞ
2

2
66666666664

3
77777777775

ðnþ1Þ

¼

~y1

0

0

~y2

0

0

2
666666664

3
777777775
þ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Dt
12 � j

kT12

0 0 0 0 0 0

0 0 0 0 0 0

0 Dt
21 � j

kT21 0 0 0

2
666666664

3
777777775

~uI1
~uC1

~J
ðuÞ
1

~uI2
~uC2

~J
ðuÞ
2

2
66666666664

3
77777777775

ðnÞ

; ð38Þ
where [ ](n) indicates the solution at the nth iteration. Obviously, Eq. (38) can be solved by a more effi-

cient Gauss–Seidel iteration where the iteration is always updated through the most recent unknown

values. However, as pointed out in the previous section, fixed point algorithms such as Jacobi and

Gauss–Seidel methods will not damp the evanescent modes. This is not a serious restriction in the pre-
sent paper since radiating applications are of primary interest in this paper. Nevertheless, relaxation on

the interface [13,14] or Krylov methods [6] can be considered to improve the convergence of the

algorithm.

To take advantage of the periodicity of the current large finite antenna array applications, we utilize the

fact
A1 C1 0

Ct
1 B1 D1

0 Dt
1

j

kT1

2
64

3
75 ¼

A2 C2 0

Ct
2 B2 D2

0 Dt
2

j

kT2

2
64

3
75: ð39Þ
Subsequently, for each iteration, we shall only need to solve
A1 C1 0

Ct
1 B1 D1

0 Dt
1

j

kT1

2
64

3
75

~uIi
~uCi

~J
ðuÞ
i

2
64

3
75

ðnþ1Þ

¼
~yi

0

0

2
64

3
75þ

0 0 0

0 0 0

0 Dt
ij � j

kTij

2
64

3
75

~uIj

~uCj

~J
ðuÞ
j

2
664

3
775

ðnÞ

; i ¼ 1; 2; j ¼ 1; 2f g=i: ð40Þ
3. Numerical results

We first validate the proposed approach by solving a few exponentially tapered notch (Vivaldi) antenna

arrays and comparing the results with other methods. Hereafter, the exponentially tapered notch antenna is

denoted as Vivaldi antenna for simplicity. The precise dimensions of a single Vivaldi antenna element are

shown in Fig. 7. For small size arrays, the results obtained by the current DDM are compared to those

computed through direct finite element/boundary integral (FEBI) method [34]. The array configurations
used in this section have been previously analyzed in [35] using the FDTD method. All the arrays analyzed

herein have a Vivaldi element as the basic building block. Details of the array configurations can be found

in [35]. All arrays are operated at frequency f = 5.0 GHz, under a uniform broadside excitation. The whole

array structure is backed by a finite PEC ground plane, which is placed 10 mm behind the Vivaldi elements.

The single antenna block was initially discretized by higher order (p = 2) tetrahedral elements with average

mesh size of k/3, where k is the wavelength in the free space. The mesh was further refined by h-adaptive

mesh refinement scheme presented in [27].

For all results the (far-field) antenna pattern of each array is presented. Notice that the antenna pattern
is usually the most important figure-of-merit of an antenna. The antenna pattern of each antenna array was



Fig. 7. Geometry, dimension and material parameters of a single Vivaldi array elements: L = 81.6 mm, W = 25.6 mm, Lt = 61.6 mm,

Wt = 24.0 mm, Ws = 8.8 mm, h = 8.8 mm, d1 = 5.6 mm, d2 = 8.8 mm, d3 = 9.6 mm, h1 = 100�, and h2 = 25�.
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calculated through a near-to-far field transformation based on Huygen�s principle. Namely, the electric field

at r ! 1 can be obtained by [1]
E rð Þ ¼ e�jkr

4pr

Z
oX

jxlr̂� r̂� J r0ð Þ½ � þ jkr̂�M r0ð Þf gejkr̂r0 dx02; ð41Þ
where oX is the truncation surface enclosing entire array, r the observation point, and r 0 the point on the

near-field surface oX. The electric and magnetic current densities, J(r 0) and M(r 0), are found by
J r0ð Þ ¼
X
i

ui n�r�Wi r
0ð Þð Þ;

M r0ð Þ ¼
X
i

ui Wi r
0ð Þ � nð Þ;

ð42Þ
where i spans the truncation surface oX unknowns only, and n is a unit vector normal to the surface oX
pointing away from X. ui is the ith solution coefficient introduced in (34), furthermore, Wi is the basis func-

tion for ui. Using (41), the antenna pattern is defined as
Antenna Pattern ½dB� ¼ 10 log
E rð Þj j2

max E rð Þj j2
h i : ð43Þ
The antenna patterns calculated by both DDM and FEBI for the 3 · 3 and 7 · 7 Vivaldi arrays were com-

pared in Figs. 8 and 10. In both cases the DDM results agree favorably with the reference FEBI answers

over the entire angular spectrum. For DDM simulations, only one Vivaldi element was created and repeat-

edly used for other elements. Therefore, the main memory consumption for DDM takes place in the storage

of the matrix equation for only one Vivaldi element and one unknown vector for each sub-domain assum-

ing Gauss–Seidel iteration scheme. In the solution procedure, the relative residual was defined as
resid ¼ max
u

nð Þ
i � u

n�1ð Þ
i




 



1

u
nð Þ
i




 



1

0
B@

1
CA; ð44Þ



Fig. 8. E-plane antenna pattern of a 3 · 3 Vivaldi antenna array.
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where u
ðnÞ
i is the solution vector for the ith sub-domain at the nth iteration, and i Æ i1 the infinite norm of a

vector. The iteration started from an initial guess of u
ð0Þ
i ¼ 0 for each sub-domain Xi. It terminated once the

residual defined by (44) was smaller than the tolerance. We have used tolerance of 10�1, and through var-

ious numerical experiments, we found that this is sufficient for obtaining accurate antenna patterns.
To observe the improved convergence of the Gauss–Seidel over Jacobi method, the 3 · 3 Vivaldi array

example was solved by both methods and the comparison is presented in Fig. 9. The convergence curves

certainly indicate much improved convergence with Gauss–Seidel. It is noted that, theoretically the

Gauss–Seidel scheme should converge twice faster than Jacobi method [4]. In addition, Gauss–Seidel pro-

cedure requires only one unknown vector per iteration, whereas Jacobi stores the present and the previous

solution vectors per iteration. Another interesting phenomenon can be observed in Fig. 11, where the

antenna patterns of the 7 · 7 array are plotted for 1st, 5th, 10th and 28th iterations. Note that the 28th
Fig. 9. Convergence of Jacobi and Gauss–Seidel outer-loop iterations of DDM for 3 · 3 Vivaldi antenna array.



Fig. 10. E-plane antenna pattern of a 7 · 7 Vivaldi antenna array.
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iteration is already converged; the pattern is practically unchanged for higher number of iterations. In this

case Jacobi method was purposely used to observe the effect of the coupling between elements. In the Jacobi

method, the first iteration does not calculate the interaction between elements, therefore, the array factor of
the array can be observed. As the iteration proceeds, the field excited by an antenna element propagates

farther away. Consequently, Fig. 11 shows how the antenna pattern converges as more coupling between

antenna elements is taken into account.

We then apply the DDM to large finite arrays. One of the important advantages of DDM is that large

periodic structures can be solved on a common PC. For a periodic structure, the matrix equation for a sin-

gle block can be repeatedly used for all other blocks in the DDM procedure. As a result, the memory

requirement for the matrix equation is insignificant. The antenna patterns of 50 · 50 and 100 · 100 ele-
Fig. 11. E-plane antenna patterns of 7 · 7 Vivaldi antenna array at various DDM iterations–Jacobi iteration.



Fig. 12. E-plane antenna pattern of a 50 · 50 Vivaldi antenna array.

Fig. 13. E-plane antenna pattern of a 100 · 100 Vivaldi antenna array.
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ments Vivaldi arrays were calculated using the DDM and the results are presented in Figs. 12 and 13. In

Table 3, some of the statistics for each simulation are tabulated. In the last column, the number of iteration
for the Gauss–Seidel is reported for 10�1 residual tolerance. For all computations in Table 3, a 2.4 GHz

CPU and 2 GByte RAM LINUX PC was used. As summarized in Table 3, 50 · 50 and 100 · 100 element

Vivaldi arrays required approximately 27 and 108 million unknowns, and 0.47 and 1.65 GB memory,

respectively. The computation time was linearly increased as the number of unknowns was increased. Note

that for large sized arrays, the memory consumption is dominated only by the storage of the unknown vec-

tor. Therefore, the use of the DDM easily solves array problems upward of 100 million unknowns on a

common PC with 2 GByte RAM.



Table 3

Computational statistics of DDM and FEBI for various Vivaldi antenna array simulations

Size of array FEBI DDM

Unknowns Memory (MB) Unknowns Memory (MB) Time/iteration (h:min:s) Number of iteration

3 · 3 80,718 190 98,010 11 00:00:14 17

7 · 7 528,420 585 533,610 17 00:01:19 19

10 · 10 1,327,790 1452 1,089,000 26 00:02:25 19

50 · 50 – – 27,225,000 471 01:18:47 23

100 · 100 – – 108,900,000 1650 04:53:54 23
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4. Conclusions

A non-overlapping DDM was successfully formulated and applied to analyze large finite antenna arrays.

Robin type TCs were used to speed up the convergence of DDM. The convergence of non-overlapping

DDM was investigated through Fourier analysis. In the analysis, it was shown that a complex Robin con-

stant with a positive imaginary part insures the convergence of the propagating modes. However, the eva-

nescent modes of either TE or TM modes fail to converge depending on the sign of the real part in the

Robin constant. Additionally, non-matching grids between neighboring sub-domains could be ‘‘glued’’ to-
gether with the proposed method, which could relax the restriction on mesh generation process. Using

DDM, the geometric repetition was easily utilized, which resulted in a dramatic reduction of computational

resources. We first validated the proposed method through small Vivaldi arrays, by comparing the com-

puted antenna patterns with those of the FEBI method. The method was further applied to large sized ar-

rays such as 100 · 100 elements array in a single PC. It was shown that DDM could be especially efficient

for large finite arrays, which have repeating geometric structures.
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